29 de mai de 2012

Trabalho Avaliativo I- Fundamentos II- Professora Josiane Almeida da Fonseca.



Professora: Josiane Almeida da Fonseca
Alunos (as):_______________________________   ___________________________________

TRABALHO AVALIATIVO I              


1-      Usando as formulas da adição (transformações de arcos), calcule:
a)      Sen (π + x)                    b) cos (  + x)                        c) sen (  - x)              d) cos (  -  x)      

2-      Se tg a = 2 e tg b = 3, calcule tg (a+b).

3-      Sabendo que sen x = , 0 < x <  e cos y = -, π < y < , calcule sen (x – y).

4-      Sendo a + b = 135° e tg a = 2, calcule tg b.

5-      Simplifique a expressão:

Y = cos ( - x) + sen (π – x)

6-      Se cos x =  e x está no primeiro quadrante, determine sen x e sen (  - x).

7-      Sabendo que 6 cos x – 1 = 4, com   < x < 2π, obtenha sen x.

8-      Sendo x um arco do 3° quadrante, qual é o sinal da expressão

y =    tg ( x +       ? E se,
     cotg x . cotg (x + π)

9-      Sabendo que sen 18° = 0,31 calcule, sem usar a tabela, os valores aproximados de:
a)      Cos 63°                b) tg 78°                c) sen 42°

10-  Dado que tg α =  e tg β = , determine cotg (α + β).

11-  Ache o período da função: f(x) = 3 sen (3x +  ).

12-  Determine o período, domínio e o conjunto imagem, construindo o gráfico de um período completo para a função dada.

a)      f: R à R | f(x) = 2 – 3 cos (2x - ).
b)     
O caminho de Deus é perfeito, a palavra do Senhor é provada; é um escudo para todos os que nele confiam.                         SL. 18:30
 
f: R à R | f(x) = 2 + tg 3x.
c)      f(x) = cotg ( ).
d)     f(x) = sec ( ).
e)      f(x) = cossec ()

Nenhum comentário:

Postar um comentário

Sua Opinião é muito importante para futuras melhorias no Blog do CAMAT/UFMT/CUR...

Agradecemos pelos comentários.